Sains Malaysiana 53(8)(2024): 1925-1935

http://doi.org/10.17576/jsm-2024-5308-16

 

Synthesis, Characterisation, and Preliminary Evaluation of Bis-Indolylmethane Derivatives as Colorimetric Sensor for Metal Ions Detection

(Sintesis, Pencirian dan Penilaian Awal Terbian Bis-Indolilmetana sebagai Penderia Kolorimetrik untuk Pengesanan Ion Logam)

 

TENGKU SARAH TENGKU MD FAUZI1, ZUNNUR ALWANI AHMAD ZAKI1, WAN NUR AFIQAH WAN ANUAR1, SYAZA AZHARI1, NURUL HIDAYAH ABDUL RAZAK3 & NADRAHTUL HUDA MISRAL2,*

 

1Industrial Chemical Technology, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

2Pusat Tamhidi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

3Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

 

Received: 5 June 2024/Accepted: 4 July 2024

 

Abstract

Heavy metal ions such as copper, chromium, and manganese are very harmful to both the environment and living organisms. Their presence in excess amount can harm the liver, kidneys, lungs, and other vital organs. A colorimetric sensor based on bis-indolylmethane (BIM) derivatives was preliminary studied to investigate their ability as a heavy metal ionophore with existence of H-bonding interactions between the indolic N–H functional groups and the metal ions. Five different BIM derivatives were synthesised involving condensation reaction between 2-methylindole and different substituted benzaldehydes, and were characterised using 1H and 13C NMR, FT-IR, and UV-Vis spectroscopy to confirm their molecular structure. Colorimetric sensing analysis involving metal screening with Cu2+, Mn2+ and Cr6+ ions via naked eye study showed compounds 1 and 5 had the most intense colour change, hence having the highest possibility to make interaction or to be bound to the metal ions. A further binding interaction study was conducted using UV-Vis titration analysis between compound 1 with the metal ions involving Cu2+ and Mn2+ and compound 5 with Cr6+, respectively, proved the synthesized BIM derivatives to act as a potential heavy metal ions colorimetric sensor.

 

Keywords: Bis-indolylmethane; colorimetric sensor; metal ion

 

Abstrak

Ion logam berat seperti kuprum, kromium dan mangan sangat berbahaya kepada alam sekitar dan organisma hidup. Kehadiran mereka dalam jumlah yang berlebihan boleh membahayakan hati, buah pinggang, paru-paru dan organ penting lain. Penderia metri warna berdasarkan terbitan bis-indolilmetana (BIM) telah dikaji awal untuk mengkaji keupayaannya sebagai ionofor logam berat dengan kewujudan interaksi ikatan-H antara kumpulan berfungsi N-H indolik dan ion logam. Lima terbitan BIM berbeza telah disintesis melibatkan tindak balas kondensasi antara 2-metilindola dan penggantian benzaldehid berbeza dan dicirikan menggunakan spektroskopi 1H dan 13C NMR, FT-IR dan UV-Vis untuk mengesahkan struktur molekulnya. Analisis penderiaan metri warna yang melibatkan penyaringan logam dengan ion Cu2+, Mn2+ dan Cr6+ melalui kajian mata kasar menunjukkan sebatian 1 dan 5 mempunyai perubahan warna yang paling ketara, justeru, mempunyai kemungkinan paling tinggi untuk melakukan interaksi atau terikat kepada ion logam. Kajian interaksi pengikatan selanjutnya telah dijalankan menggunakan analisis titratan UV-Vis antara sebatian 1 dengan ion logam yang melibatkan Cu2+ dan Mn2+ dan sebatian 5 dengan Cr6+ masing-masing membuktikan terbitan BIM yang disintesis berpotensi untuk bertindak sebagai penderia metri warna ion logam berat.

 

Kata kunci: Bis-indolilmetana; ion logam; penderia metri warna

 

REFERENCES

Alraqa, S.Y., Alharbi, K., Aljuhani, A., Rezki, N., Aouad, M.R. & Ali, I. 2021. Design, click conventional and microwave syntheses, DNA binding, docking and anticancer studies of benzotriazole-1,2,3-triazole molecular hybrids with different pharmacophores. Journal of Molecular Structure 1225: 129192. https://doi.org/10.1016/j.molstruc.2020.129192

Azees, R., Cooray, A.T. & Kumarasinghe, K.G.U.R. 2021. Microwave-assisted one-pot multicomponent synthesis of indole derived fluorometric probe for detection of Co2+ ions. Journal of Science 24(2): 27-42.

Barbero, M., Cadamuro, S., Dughera, S., Magistris, C. & Venturello, P. 2011. A new practical synthesis of triaryl and trisindolylmethanes under solvent-free reaction conditions. Organic and Biomolecular Chemistry 9(24): 8393-8399. https://doi.org/10.1039/c1ob06280h

Ding, Y., Tang, Y., Zhu, W. & Xie, Y. 2015. Fluorescent and colorimetric ion probes based on conjugated oligopyrroles. Chem. Soc. Rev. 44: 1101-1112. https://doi.org/10.1039/c4cs00436a

El-Sayed, M., Mahmoud, K. & Hilgeroth, A. 2014. Glacial acetic acid as an efficient catalyst for simple synthesis of dindolylmethanes. Current Chemistry Letters 3(1): 7-14. https://doi.org/10.5267/j.ccl.2013.10.003

He, F., Li, P., Gu, Y. & Li, G. 2009. Glycerol as a promoting medium for electrophilic activation of aldehydes: Catalyst-free synthesis of di(indolyl)methanes, xanthene-1,8(2h)-diones and 1-oxo-hexahydroxanthenes. Green Chemistry 11(11): 1767-1773. https://doi.org/10.1039/b916015a

Iqbal, M., Ali, S., Tahir, M.N., Abdul Haleem, M., Gulab, H. & Shah, N.A. 2020. A binary copper(ii) complex having a stepped polymeric structure: Synthesis, characterization, DNA-binding and anti-fungal studies. Journal of the Serbian Chemical Society 85(2): 203-214. https://doi.org/10.2298/JSC190423065I

Kandasamy, K., Ganesabaskaran, S., Pachamuthu, M.P., Maheswari, R. & Ramanathan, A. 2015. Synthesis of pyrazolylbisindoles over mesoporous lewis acidic ZrTUD-1: Potential application in selective Cu2+ colorimetric detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 150: 34-39. https://doi.org/10.1016/j.saa.2015.05.009

Karaaslan, C. & Suzen, S. 2011. Electrochemical behavior of biologically important indole derivatives. International Journal of Electrochemistry 2011: 154804. https://doi.org/10.4061/2011/154804

Kaya, S. 2021. A new indole substituted biphenyldiamine derivative Schiff base: A new sensor application for the selective detection of Hg(II) ions. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya 47(12): 903-908. https://doi.org/10.1134/S1070328421120071

Kerru, N., Gummidi, L., Maddila, S.N., Bhaskaruni, S.V.H.S. & Jonnalagadda, S.B. 2020. Bi2O3/FAp, a sustainable catalyst for synthesis of dihydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives through green strategy. Applied Organometallic Chemistry 34(5): e5590. https://doi.org/10.1002/aoc.5590

Lu, C., Chung, Y-L. & Chang, K-F. 2006. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. Journal of Hazardous Materials 138(2): 304-310. https://doi.org/10.1016/j.jhazmat.2006.05.076

Shanti, M., Pulusu, V., Shylaja, S., Yaku, G. & Umesh Kumar, U. 2023. Nanoscale bismuth selenide as an efficient catalyst for solvothermal, and microwaveassisted one-pot synthesis of bis(indolyl)methanes. RASAYAN Journal of Chemistry 16(03): 1286-1297. https://doi.org/10.31788/RJC.2023.1638247

Oliveira, E., Baptista, R.M.F., Costa, S.P.G., M. Raposo, M.M. & Lodeiro, C. 2014. Synthesis and solvatochromism studies of novel bis(indolyl)methanes bearing functionalized arylthiophene groups as new colored materials. Photochemical and Photobiological Sciences 13(3): 492-498. https://doi.org/10.1039/c3pp50352f

Ozcan, E., Kazan, H.H. & Çoşut, B. 2019. Recent chemo‐/biosensor and bioimaging studies based on indole‐decorated BODIPYs. Luminescence 35(2): 168-177. https://doi.org/10.1002/bio.3719

Schanne, G., Zoumpoulaki, M., Gazzah, G., Vincent, A., Preud’Homme, H., Lobinski, R., Demignot, S., Seksik, P., Delsuc, N. & Policar, C. 2022. Inertness of superoxide dismutase mimics Mn(II) complexes based on an open-chain ligand, bioactivity, and detection in intestinal epithelial cells. Oxidative Medicine and Cellular Longevity 2022: 3858122 https://doi.org/10.1155/2022/3858122

Singh, V., Singh, N., Rai, S.N., Kumar, A., Singh, A.K., Singh, M.P., Sahoo, A., Shekhar, S., Vamanu, E. & Mishra, V. 2023. Heavy metal contamination in the aquatic ecosystem: Toxicity and its remediation using eco-friendly approaches. Toxics 11(2): 147. https://doi.org/10.3390/toxics11020147

Stavrou, M., Chazapis, N., Arapakis, V., Georgakilas, V. & Couris, S. 2023. Strong ultrafast saturable absorption and nonlinear refraction of some non-van Der Waals 2D hematene and magnetene nanoplatelets for ultrafast photonic applications. ACS Applied Materials and Interfaces 15(29): 35391-35399. https://doi.org/10.1021/acsami.3c06955

Tang, Y., Liu, H., Jiang, G. & Gu, Z. 2017. Highly selective recognition of Cd2+ by an indole derivative chemosensor. Journal of Applied Spectroscopy 84(5): 911-914. https://doi.org/10.1007/s10812-017-0564-6

Tibebe, D., Lemma, D. & Teshome, G. 2019. Determination of heavy metals in tilapia (Oreochromis niloticus) and water samples from Lake Hayq, South Wollo, Ethiopia. International Journal of Chemistry and Materials Research 7(1): 10-19. https://doi.org/10.18488/journal.64.2019.71.10.19

Yaradua, A.I., Bungudu, J.I., Shuaibu, L., Nasir, A., Usman, A., Kankia, I.H., Matazu, N.U., Suleiman, Z.A., Rumah, F.A., Bello, U., Tukur, A.B., Sani, A.S., Lawal, R.G., Matazu, H.K., Sani, A.K., Kabir, Z.G., Yaradua, A.I., Kabir, H.G., Halliru, M.I., Abbas, A., Dalhatu, M.M., Yaradua, I.A., Nasir, M.N., Mukhtar, F., Hassan, M., Abdullahi, B., Sabiru, A.Y., Nasir, R., Rawayau, M.A. & Muhammad, A.N. 2023. Illegal mining and armed banditry in Katsina State, Nigeria: What is their contribution to the heavy metal pollution of a popularly consumed vegetable? Journal of Applied Life Sciences International 26(1): 1-9. https://doi.org/10.9734/jalsi/2023/v26i1591

Zhang, G., Savateev, A., Zhao, Y., Li, L. & Antonietti, M. 2017. Advancing the n → Π∗ electron transition of carbon nitride nanotubes for H2 photosynthesis. Journal of Materials Chemistry A 5(25): 12723-12728. https://doi.org/10.1039/c7ta03777e

Zhang, Z.C., Zhang, T., Chang, Y.S., Lun, M.M., Zhang, Y., Fu, D.W. & Wu, Q. 2022. Competitive dual-emission-induced thermochromic luminescence in organic-metal halides. Inorganic Chemistry 61(34): 13322-13329. https://doi.org/10.1021/acs.inorgchem.2c01182

 

*Corresponding author; email: nadrahtulhuda@usim.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next